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ABSTRACT 
 
The Tate Theory of penetration of armor targets by long rod 
penetrators [1,2] has been the benchmark one-dimensional model of 
this event for decades.  The model is applied to metal-on-metal 
normal impact of cylindrical rod penetrators.  The key physical 
parameters in the model are the penetrator and target strengths and 
densities (assumed constant), as well as the penetrator length.  With 
these parameters and the impact speed, penetration depth for all 
combinations of the parameters can be evaluated. 
 
In a recent paper, Walters et al [3] showed that all of the important 
effects of the classic Tate Theory could be captured by a regular 
perturbation solution of the fundamental equations.  The small 
parameter that they used was ε =Yp/ρpv0

2, where Yp is the penetrator 
yield strength, ρp is the penetrator density and v0 is the impact speed. 
 
In 1987, Jones et al [4] modified the equation of motion of the 
undeformed section to include mass loss and mushrooming at the 
interface with the target.  The changes to the theory that result from 
these modifications bring the strengths of the target and penetrator 
into line with laboratory levels while achieving reasonable 
penetration depths.  In this paper, we will show that the regular 
perturbation analysis used by Walters et al [3] can be extended to the 
modified system of equations from Jones et al [4] using the same 
small parameter mentioned in the previous paragraph.  The 
perturbation process is carried out to terms of first order and an 
approximate analytical solution is found. This solution is then used to 
repeat the reduction of data given by Wilson et al [5] for Aluminum 
and Steel alloy penetrators normally impacting Aluminum and Steel 
targets. Another case involving heavy metal penetrators impacting 
Rolled Hard Armor (RHA) targets is also presented. 
 
 
NOMENCLATURE 
 
ρt  ≡ density of target 
ρ  ≡ density of penetrator 
RT  ≡ strength of target 
YP  ≡ strength of penetrator 
u  ≡ instantaneous velocity of the deformed rod section  
v  ≡ instantaneous velocity of the undeformed rod section  

ψ  ≡ instantaneous length of the undeformed rod section  
t  ≡ time 
A0 ≡ initial cross-sectional area of projectile 
v0  ≡ initial velocity of the penetrator 
   0  ≡ initial length of the penetrator l
A ≡ cross-sectional area of crater 
z  ≡ penetration depth 
e = mean strain in the penetrator mushroom 
 
INTRODUCTION 
 
In a 1967 paper, Tate [1] introduced his one-dimensional theory of 
long rod penetration that has been used to predict the penetration 
depth of long rod penetrators for decades.   The equations he reported 
to govern such impacts are as follows: 
 
 

ptt YuvRu +−=+ 22 )(
2
1

2
1 ρρ  (1) 

 
 

dt
dvYp lρ−= (2)  

 
 

)( uv
dt
d

−−=
l

(3) 
 
 

(4) ∫= udtz
 
 
 
Simultaneous solution of Equations 1-4 leads to a prediction for the 
penetration depth, z, requiring only the impact velocity of the 
penetrator, along with the other physical parameters in the model. 
These equations show that target and penetrator strengths and 
densities along with impact velocity are the determining factors when 
estimating penetration depth.  In a second publication in 1969 [2], 
Tate detailed two distinct cases that are possible when comparing 
target and penetrator strengths.  Case 1 is applicable when the target 
strength is greater than the penetrator strength.  Case 2 involves 
penetrator strengths greater than the target’s.  Though not developed 
in Tate’s publication, a third case exists when both the penetrator and 
the target are of equal strength.  It is also true that these cases can be 
further subdivided by comparing the target and penetrator densities. 



Recently, Walters et al [3] have developed, via regular perturbation 
techniques, an analytical solution to the Tate equations.  This 
approach required normalization of the Tate equations using the 
following change of variables: 
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(13) 
 

 
Equations 5-13 involve dimensionless groupings with the exception 
of β in Equation 9 which has the dimension of time-1.  The 
dimensionless grouping in Equation 13 is usually very small, as 
observed by Walters et al [3]. Thus, the small parameter, ε, is a 
candidate for the focus parameter in a regular perturbation expansion. 
Expanding each dimensionless variable into a series of powers of ε 
leads to: 
 

(14) 
 

 (15) 
 

(16) 
 

(17) 
 

In 1987 Jones et al [4] modified the equation of motion of the 
undeformed rod section. They accounted for instantaneous mass loss 
and mushrooming at the penetrator/target interface. This analysis 
formulated the new equation of motion: 
 
 

(18) 
 
 
In this paper, we will apply the regular perturbation method used by 
Walters et al to the same set of equations governing long rod impact 
with the equation of motion developed by Jones et al, Equation 18 in 
place of Tate’s, Equation 2. 
 
 
 
 
 
 

THEORY 
 
The parameters defined in Equations 5-13 are applied to the 
governing Equations 1, 3, 4 and 18 to give the following 
dimensionless equations: 

0v
vV =  

(19) 222 2)( UUV μαε =−−
 

0v
uU =  

)(1 UV
d
d

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=

μ
μ

τ
λ (20) 

 

0l

l
=λ  

∫
+

= τ
μ
μ UdZ 1 (21) 

 

ρ
ρμ t=2  

μ
με

τ
λ

τ
λ

)1(
)1()(

e
UV

d
d

d
dV

+
+−

=−+ (22) 
 

0

0

1 l

v
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
μ

μβ  
By substituting the perturbation expansions, Equations 14-17, into 
these dimensionless equations, we can derive systems of equations 
for the zeroth, first, and higher order terms if necessary. The zeroth 
order system is: 
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This system of four equations and four unknowns can be easily 
solved to provide: 
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These variables are all explicit functions of the dimensionless time 
variable τ.  

)1(
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The system that results from retaining terms of first order of ε is: 
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Equation 31 can be algebraically manipulated to solve for U1 in terms 
of V1 and Equation 32 algebraically renders V1 in terms of λ1. 
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(35) 
 
 
 

(36) 
 

 
Substituting Equation 36 into Equation 35 and eliminating V1 
provides: 
 
 

(37) 
 
 

Equations 36 and 37 can be substituted into Equation 34 which will 
then simplify to: 
 
 

(38) 
 
 

By changing the independent variable, τ, in this equation to ξ, as 
defined in Equation 39, we obtain Equation 40. 
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 Multiplying Equation 40 through by the factor  
 
 

(41) 
 
reduces this equation to 
 

 
 
 

(42) 
 
 
 
 

which may be recognized as an Euler Equation. To solve this second 
order differential equation, the homogenous, or reduced, solution 
shown in Equation 43 is considered. 
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To solve this equation, the power solution shown in Equation 44 is 
assumed.   
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where n is a constant exponent to be determined and λ1C is the 
solution to the reduced equation. Substituting Equation 44 into 
Equation 43 leads to the quadratic equation for n: 
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The roots of this quadratic equation are n1 and n2 below. 
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The general solution to Equation 42 now has the form: 
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where ξp is any particular solution to Equation 42 and c1 and c2 are 
arbitrary constants.  To find ξp, assume a particular solution of the 
form: 
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coefficients, we find K to be the following: 
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All that remains to be accomplished to complete the general solution 
of Equation 42 is to evaluate the arbitrary constants c1 and c2.  The 
initial conditions required to solve for these constants occur at τ = 0 
(ξ = 1).  The normalized rod velocity, V, and rod length, λ, are equal 
to one at impact. This stipulates that V0 and λ0 are one at τ = 0. 
Equations 14 and 16 thus require that V1 and λ1 be zero at τ = 0.  The 
conditions, Equations 51 and 52, used to solve for c1 and c2 come 
directly from these relationships. The initial conditions imposed on 
U0 and U1 are determined by Equations 23 and 31.  The concept of 
non-zero initial conditions for normalized penetration velocity is not 
inconsistent with common practice. The initial conditions are applied 
to those quantities which appear in the equations of motion, 
Equations 19 through 22, with derivatives.  These equations do not 
contain any derivatives of U.  While an order of magnitude analysis 
does apply to U, its initial conditions should be dictated by the other 
variables. 
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Applying Equations 51 and 52 to Equation 48 with the particular 
solution described by Equations 48-50 leads to values for the 
arbitrary constants c1 and c2 given below. 
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(53) 
 
 

(54) 
 
 

Having determined the constants c1 and c2, the first order terms for 
the expansions of U1 and V1 can be computed directly using 
Equations 36 and 37.  Then, using Equation 33, we can find the first 
order term for the penetration depth. Since all quantities have been 
expressed in terms of ξ, it is convenient to change the variables to 
integration with respect to ξ.  
 

 
(55) 

 
 
Now, the penetration depths for all cases can be found. This will be 
done in the next section for two Aluminum alloys and two Steel 
alloys. 
 
RESULTS 
 
In order to test the theory, experimental results from Wilson et al [5] 
are examined.  These results contain examples of all three cases of 
penetration: equal strength, target stronger than penetrator, and 
penetrator stronger than target.  Wilson et al include crater diameters 
in their test reports, and this data was used to calculate mean strain 
using Equation 56.   
 

(56) 
 
 
Results for penetration depth are then compared to the experimental 
data.  The properties of target and penetrator materials ([5], [6] and 
[7]), as well as reference numbers to be used for the remainder of this 
paper, are recorded in Table 1.   
 

Material (#) Strength (MPa) Density (kg/m3)
4340 steel annealed (1) 1000 7850
4340 steel hardened (2) 1448 7880
7075-T6 aluminum (3) 465 2810
2024-T4 aluminum (4)    248 2780
Rolled Hard Armor (5) 879.6 7880
DU-3/4Ti (6) 1951 19613

Mechanical Properties of the Test Materials
Table 1

 
 

First, the equal strength case is considered, specifically using a target 
and penetrator of material (2).  In this case, µ is equal to one, and α is 
equal to zero, as they are defined in Equations 8 and 11.  Penetration 
in the equal strength case will persist until penetrator velocity (V) 
equals zero. Therefore, the value of ξ corresponding to V = 0 
determines the time for which the event concludes.  The positive root 
of Equation 57, derived from Equations 14, 27, 36, and 39 determines 
this value of ξ. 
 
 

(57) 
 
 
Total dimensionless penetration depth is then calculated in Equation 
58, which is derived from Equations 17, 30, 39, and 55, using the ξ 
found from Equation 57. 
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= Kc Using Equation 58 and the given length of the penetrator, Equation 
12 is used to determine total penetration.  Theoretical and 
experimental results are compared in Figure 1. 
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Figure 1.  Penetration vs. velocity for material 2 target and penetrator. 
 

Next, Tate’s first case, target strength greater than penetrator 
strength, is considered.  In this case, the value of α is positive.  Two 
specific situations are examined: material 3 penetrating material 2 
and material 1 penetrating material 2.  In the first situation, the target 
significantly exceeds the penetrator in both strength and density.  In 
the second situation, the target only slightly exceeds the penetrator in 
strength and density. 

10 −=
A
Ae  

Penetration in this case will continue until penetration velocity (U) 
equals zero, as noted in Equation 59.  Variable substitutions from 
Equations 36 and 39 are made to Equation 59 to solve for ξ which 
defines the duration of penetration. 
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After the time corresponding to ξ, as found with Equation 59, 
residual deformation of the penetrator occurs but penetration ceases. 
 
Using Equations 12, 30, and 55, total penetration is again calculated 
with the value of ξ found with Equation 59.  Theoretical and 
experimental results are compared in Figure 2. 
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Figure 2.  Penetration vs. velocity for cases where target strength exceeds 
penetrator strength. 

Finally, Tate’s second case, penetrator strength exceeds that of the 
target, is examined.  In this case, α is negative. There are six 



combinations of penetrator and target materials where this is true.  
Wilson et al provide experimental data for all six of these 
combinations. 
 
In all variations of this case, the penetration occurs in two stages: 
initial impact and rigid body penetration.  The duration of the first 
stage is defined by the value of ξ that occurs when penetration 
velocity (U) equals penetrator velocity (V), as defined in Equation 60. 
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(60) 
 
 

At this value of ξ, the initial impact stage is completed, and the 
penetrator begins to act as a rigid body.  Equation 58 can be used to 
calculate the value of Z for this initial impact stage.  To analyze the 
penetration depth of the rigid body penetration stage, the 
dimensionless length and velocity terms must be determined at the 
value of ξ from Equation 60.  The value of λ at this value of ξ is 
obtained by substituting Equations 29 and 48 into the perturbation 
sequence, Equation 16.  Similarly, the value V is obtained by 
substituting Equations 27 and 36 into Equation 14. 
 
The equation of motion for this stage of rigid body penetration, 
Equation 61, is derived by substituting the modified Bernoulli 
equation, Equation 1, into the Jones et al equation of motion, 
Equation 18.  It is assumed that during rigid body penetration, the 
penetrator has no mushroom, e = 0. 

 
 

(61) 
 
The rod length and velocity correspond to the values when rigid body 
penetration begins. 
 
Equation 61 is modified using the dimensionless parameters defined 
by Equations 5-13 to yield the form in Equation 62, which can be 
used to calculate Z during the rigid body stage of the penetration. 
 
 

(62) 
 
 
The values of Z determined by Equations 58 and 62 can be combined 
to yield a final value of Z.   This value and Equation 12 can be used 
to determine total penetration depth.  Theoretical and experimental 
results for each of the six combinations are compared in Figures 3 
through 8. 
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Figure 3.  Penetration vs. velocity for material 2 penetrating 3. 
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Figure 4.  Penetration vs. velocity for material 1 penetrating 3. 
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Figure 5.  Penetration vs. velocity for material 2 penetrating 1. 
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Figure 6.  Penetration vs. velocity for material 2 penetrating 4. 
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Figure 7.  Penetration vs. velocity for material 3 penetrating 4. 
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Figure 8.  Penetration vs. velocity for material 1 penetrating 4. 

 
As a final example, consider the penetration of a Rolled Homogenous 
Armor, RHA, target by a heavy metal projectile, DU-3/4Ti (Depleted 
uranium-70% Titanium).  The density of the DU-3/4Ti is given in 
Table 1 and the dynamic strength is taken from Taylor cylinder test 
data repeated by Jones et al [6].  Penetration depth estimates require 
the same methods and equations used to find the theoretical 
penetration depths reported in Figures 3-8, as the penetrator strength 
is greater than the target strength.  Figure 9 shows the theoretical 
penetration depths, as calculated with this method, compared with the 
experimental depths reported by Keele et al [7].  The agreement is 
reasonable, although the theoretical estimates are always less than the 
experimental results. 
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Figure 9.  Penetration vs. velocity for material 2 target and penetrator. 

 
CONCLUSIONS 
 
In this paper, we have presented a small parameter analysis of the 
modified Tate equations.  It is well known that to achieve reasonable 
correlations with experimental observations using the Tate theory, 
unusually high strength values must be assumed for the target and 
penetrator materials.  For this reason, the equation of motion of the 
undeformed section of the projectile was modified by Jones et al [4] 
to include mass loss and mushrooming during the penetration 
process.  These changes have allowed laboratory strength estimates to 
produce reasonable correlation with experiments.  However, like the 
Tate theory, the equations for anything beyond the simplest cases 
required numerical integration.  The small parameter analysis 
employed by Walters et al [3] overcame this difficulty and produced 
an accurate approximate solution for the Tate equations.  The small 
parameter in Equation 13 applies to almost every reasonable case.  
This same small parameter is used in this paper to extend the results 
to the modified Tate equations.  The result is a set of approximate 
solutions with which penetration depth or any of the other relevant 
physical parameters, such as residual rod length, can be estimated 

using laboratory strength data.  To estimate the mean mushroom 
strain, a key parameter in the modified Tate equations, measurements 
of actual craters in targets were used. 
  
The crater geometry employed here is cylindrical with the diameter 
estimated from the “profile hole diameter” in the target (Wilson et al 
[5]).  For the case of penetrator strength exceeding target strength, the 
crater geometry consists of two cylinders.  The second cylinder, 
which captures rigid body penetration, has the original diameter of 
the penetrator.   It is possible to make the strain estimates a priori 
using laboratory strengths, Cinnamon et al [8].  There is a period of 
initial transient behavior at impact which is dominated by the shock.  
A narrow opening is created by the projectile followed by 
mushrooming of the nose, during which there is negligible 
deceleration of the undeformed section (Cinnamon et al [8]).  
Including this behavior in the analysis will modify the crater 
geometry and increase the penetration depth, which is in line with the 
comparison between predicted and observed penetration depths.  
Further study of the effects of the transient behavior will be 
considered in subsequent work. 
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